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Abstract. This paper presents Generalized Proof-Number Monte-
Carlo Tree Search: a generalization of recently proposed combina-
tions of Proof-Number Search (PNS) with Monte-Carlo Tree Search
(MCTS), which use (dis)proof numbers to bias UCB1-based Selec-
tion strategies towards parts of the search that are expected to be eas-
ily (dis)proven. We propose three core modifications of prior combi-
nations of PNS with MCTS. First, we track proof numbers per player.
This reduces code complexity in the sense that we no longer need
disproof numbers, and generalizes the technique to be applicable to
games with more than two players. Second, we propose and exten-
sively evaluate different methods of using proof numbers to bias the
selection strategy, achieving strong performance with strategies that
are simpler to implement and compute. Third, we merge our tech-
nique with Score Bounded MCTS, enabling the algorithm to prove
and leverage upper and lower bounds on scores—as opposed to only
proving wins or not-wins. Experiments demonstrate substantial per-
formance increases, reaching the range of 80% for 8 out of the 11
tested board games.

1 Introduction

Monte-Carlo Tree Search (MCTS) [10, 13] is a best-first search
method guided by the results of Monte-Carlo simulations, well estab-
lished in game AI [7, 29]. Using the results of previous simulations,
the method gradually builds up a game tree in memory and increas-
ingly becomes better at accurately estimating the values of the most
promising moves. MCTS has substantially advanced the state of the
art in several deterministic game domains, in particular Go [23], but
also other board games including Amazons [16], Hex [2], Lines of
Action [28], and General Game Playing (GGP) [5].

In tactical games, where the main line towards the winning po-
sition is typically narrow with many non-progressing alternatives,
MCTS may often lead to an erroneous outcome because the nodes’
values in the tree do not converge fast enough to their game-theoretic
value. To mitigate this effect, MCTS variants have been proposed that
integrate minimax search [27, 25, 15, 4]. Recently, Proof-Number
Search (PNS) [1] has been integrated in MCTS [11, 20]. PNS has the
advantage proving endgames faster than traditional minimax in many
domains. The variant PN-MCTS [14] has been shown to improve
over default MCTS in domains such as Lines of Action, MiniShogi,
Knightthrough, and Awari.
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Figure 1: Outline of Monte-Carlo Tree Search [9].

In this paper, we propose a generalization of PN-MCTS, called
Generalized Proof-Number Monte-Carlo Tree Search (GPN-MCTS).
First, this extension of PN-MCTS tracks proof numbers per player,
which reduces code complexity in the sense that we no longer need
disproof numbers, and generalizes the technique to be applicable to
games with more than two players. Second, GPN-MCTS contains
different enhancements of using proof numbers to bias the UCT se-
lection strategy [13], achieving strong performance with strategies
that are simpler to implement and compute. Third, PN-MCTS is in-
tegrated with Score Bounded MCTS [8], enabling the technique to
prove and leverage upper and lower bounds on scores—as opposed
to only proving wins or non-wins.

For the purpose of the experiments, GPN-MCTS was implemented
in the Ludii general game playing system [19]. Although it is not
guaranteed to improve performance for every game, in many cases
when it works, its improvements are significant, reaching 80% win
rate on 8 out of the 11 tested board games, and over 60% on the
remaining three. Moreover, we show that it pairs well with the Score-
bounded MCTS enhancement.

2 Background

2.1 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [10, 13] is a best-first search
method that gradually builds up a search tree, balancing exploita-
tion of parts that seem promising based on earlier iterations, with
explorations of parts that were infrequently explored. It does this by
iterating through four strategic steps [9], depicted in Figure 1, until a
time or iteration budget expires.
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Selection Step. The selection step traverses the tree, starting from
the root node, until a node is reached for which there are still le-
gal actions that have not yet been expanded into nodes of the search
tree (or until a terminal node is reached). This step implements the
trade-off between exploration and exploitation. One of the most com-
mon baseline implementations of MCTS—referred to as Upper con-
fidence Bounds applied to Trees (UCT) [13]—uses the UCB1 strat-
egy [3] to choose among the children of any given current node. It
works as follows. Let I be the set of nodes immediately reachable
from the current node p. The selection strategy selects the child b of
node p that satisfies Formula (1):

b ∈ argmaxi∈I

(
vi + C ×

√
lnnp

ni

)
, (1)

where vi is the estimated value of the node i, ni is the visit count of
i, and np is the visit count of p. C is a hyperparameter which can be
tuned experimentally. Here, ties are broken randomly.

Expansion Step. As previously stated, the selection step continues
until a node is reached that has not yet expanded all of its children.
Among the children that have not been stored in the tree, one is se-
lected uniformly at random. This node L is then added as a new leaf
node. If the selection step arrives at a terminal node, the expansion
and subsequent play-out steps are skipped.

Play-out Step. From the new leaf node L onwards, the play-out
step is performed. Moves are selected in self-play until the end of the
game is reached. This step might consist of playing uniformly ran-
dom moves or—often better—semi-random moves chosen according
to a simulation strategy.

Backpropagation Step. In the final step, the result R of a play-out
k is backpropagated from the leaf node L, through the previously
traversed nodes, all the way up to the root. The result is scored pos-
itively (Rk = +1) if the game is won, and negatively (Rk = −1)
if the game is lost. Draws lead to a result Rk = 0. A backprop-
agation strategy is applied to the value vi of a node i. Here, it is
computed by taking the average of the results of all simulated games
made through this node [10], i.e., vi = (

∑
k∈K Rk)/ni, where K is

the set of indices for all play-outs. Visit counts ni for all nodes along
the trajectory are also incremented.

When the search budget expires, the move that is ultimately se-
lected to be played is the one from the root node that has the highest
visit count (though other strategies are possible as well [9]).

2.2 Proof-Number Search

Proof-Number Search (PNS) is a best-first search method especially
suited for finding the game-theoretic value in game trees [1]. Its aim
is to prove a particular goal. In the context of this paper, the goal
is to prove a forced win for the player to move. A tree can have
three values: true, false, or unknown. In case of a forced win, the
tree is proven and its value is true. In case of a forced loss or draw,
the tree is disproven and its value is false. Otherwise, the value of
the tree is unknown. As long as the value of the root is unknown,
the most-promising node is expanded. Like MCTS, PNS does not
need a domain-dependent heuristic evaluation function to determine
the most-promising node [1]. In PNS, this node is usually called the
most-proving node. PNS selects the most-proving node using two
criteria: (1) the shape of the search tree (the branching factor of every
internal node) and (2) the values of the leaves. These two criteria
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Figure 2: An AND/OR tree with proof and disproof numbers [26]. A
square denotes an OR node, and a circle denotes an AND node. The
numbers to the right of a node denote the proof number (upper) and
disproof number (lower).

enable PNS to treat game trees with a non-uniform branching factor
efficiently.

PN search represents the game as an AND/OR tree. OR nodes
correspond to positions with the first player to play, while in AND
nodes, the second player is to play. An example of such a tree is given
in Figure 2. In PNS, the proof number (pn) represents the minimum
number of leaf nodes, which have to be proven in order to prove the
node. Analogously, a disproof number (dpn) represents the minimum
number of leaf nodes that have to be disproven in order to disprove
the node. Because the goal of the search is to prove a forced win,
winning nodes are regarded as proven. Therefore, they have pn = 0
and dpn = ∞. Lost or drawn nodes are regarded disproven. They
have pn = ∞ and dpn = 0. Unknown leaf nodes have pn = 1 and
dpn = 1. The pn of an internal OR node is equal to the minimum of
its children’s proof numbers, because to prove an OR node it suffices
to prove one child. The dpn of an internal OR node is equal to the sum
of its children’s disproof numbers, because to disprove an OR node
all the children have to be disproven. The pn of an internal AND
node is equal to the sum of its children’s proof numbers, because
to prove an AND node all the children have to be proven. The dpn
of an AND node is equal to the minimum of its children’s disproof
numbers, because to disprove an AND node it suffices to disprove
one child.

The procedure of selecting the most-proving node to expand next
is as follows. The algorithm starts at the root. Then, at each OR node
the child with the smallest pn is selected as successor, and at each
AND node the child with the smallest dpn is selected as successor.
Finally, when a leaf node is reached, it is expanded (which makes the
leaf node an internal node) and the newborn children are evaluated.

2.3 Proof-Number Monte-Carlo Tree Search

Proof-Number Monte-Carlo Tree Search (PN-MCTS) was initially
proposed in [11], introducing an enhancement of the UCB1 formula
for two-player zero-sum games that includes a PNS-related term
biasing selection towards the children preferred by Proof-Number
Search. It was later extended by [14] to take advantage of the ob-
servation that already computed (dis)proof numbers can also serve
to bias final move selection and skip solved subtrees, similarly to a
Score-Bounded MCTS [8]. In this work, we aim to generalize on all
the above accomplishments.

PN-MCTS tracks proof and disproof numbers from the point of
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view of the root node player in all nodes of the MCTS tree. The
OR/AND nodes are assigned accordingly, from the root player’s per-
spective. The PNS-based part of the algorithm is a paranoid type [22]
as opponent decisions, based on disproof numbers, make it more in-
terested in preventing the root player’s victory than maximizing its
own result.

The proposed UCT-PN formula, shown in (2), extends the standard
UCB1 (1), introducing a term that is greater for child nodes that are
closer to being solved according to (dis)proof numbers, weighted by
a Cpn constant.

b ∈ argmaxi∈I

(
vi + C ×

√
lnnp

ni
+ Cpn × PNRank(i , I)

)
(2)

Instead of directly using the (dis)proof numbers in the formula,
the idea is to sort their values and use a ranking system. This pro-
cess aims to reflect the observation that the magnitudes of differences
amongst (dis)proof numbers technically do not have much meaning,
and is encapsulated by the PNRank function (3).

PNRank(i, I) = 1− rank(i)

maxj∈I rank(j)
(3)

The best node—the one that would be chosen by PNS—gets a rank
of 1. This is the child with the lowest proof number in OR nodes, and
the one with the lowest disproof number in AND nodes. The next
one in order would get rank 2, and so on. Tied nodes are awarded the
same rank. Then, the ranks are normalized into the range of [0, 1],
to allow easier scaling with the exploration and exploitation terms of
the UCB1 formula.

Experiments performed in [14] showed that the introduction of
UCT-PN was enough to achieve an overwhelming performance
(around 87% versus the vanilla MCTS) in Lines of Action. Further
extensions by final move selection and subtree solving were neces-
sary to obtain winrates above 65% for MiniShogi and Knighttrough.
To obtain a winrate above 50% for the last of the tested games,
Awari, a special approach handling draws was introduced, involving
the maintenance of a second set of (dis)proof numbers.

3 Generalized Proof-Number MCTS

In this section, we present the GPN-MCTS algorithm and discuss its
main features.

3.1 Proof Numbers per Player

The goal of the PN-UCB formula is to bias exploration towards sub-
trees that can be proven quickly. Thus, a reasonable assumption is
that each player is interested in their own win. As mentioned before,
this is not the approach taken by the PN-MCTS version described in
[14]. In that work, all (dis)proof numbers are computed for the per-
spective of the root player, with proof numbers being used to guide
selection in OR nodes, and disproof numbers in AND nodes. This ap-
proach results in asymmetry in behavior in particular in games where
draws can occur, as the root player attempts to prove their wins,
whereas the opponent only attempts to disprove the root player’s
wins (i.e., attempts to prove any mix of drawing and winning for
themselves).

We propose a different approach, which consists of tracking sepa-
rate proof numbers per player in each node of the search tree. This

reduces code complexity in the sense that we no longer need to en-
code separate logic for handling disproof numbers, and the search
behaviour becomes more symmetric in that each player attempts to
prove their own wins.

This modification influences how the algorithm perceives
AND/OR proof nodes. Let i be a game tree node, and p the player
to move in that node. To prove a win, it is enough that any of the
available paths leads to a win, so it is an OR node for the player p.
From the perspective of any players other than p, the same node is
treated as an AND node, in which all children must be proven for the
node to be considered proven.

The advantage of the approach with a single proof number per
player is that it naturally generalizes for games with more than two
players. Although the proof number trees are no longer composed of
alternating AND/OR layers, the way the algorithm behaves remains
unchanged. For each player, when computing their proof tree, the
first-player player’s nodes are OR nodes, and all the remaining ones
are AND nodes.

That way, the algorithm still assumes that every player is inter-
ested in proving their own win. However, proving a win for a given
player still requires a paranoid assumption about the strategies of
their opponents. Thus, our algorithm in this part behaves as Paranoid
Proof-Number Search [22], a generalization of Proof-Number Search
allowing to prove games with any number of players.

3.2 UCT-PN Formulas

The purpose of PN-term in the UCT-PN formula is to bias search to-
wards nodes that are potentially easier to prove. However, the actual
strength of this bias and how it depends on the actual proof numbers,
is a critical point to discuss. Formula (3), using rank ordering of val-
ues, was proposed by [11, 14] with a justification that the magnitudes
of differences amongst (dis)proof numbers are not meaningful.

We suspect that throwing away information about the actual
(dis)proof values is a potential waste, and decided to search for pos-
sible alternatives. In fact, we believe that there are many functions
that could serve this role, which may be simpler to implement and
computationally cheaper than PNRank. This may be of special im-
portance, as the problem of the PNRank formula is its inefficiency.
The need to sort all children’s values every time a (dis)proof num-
ber is updated to calculate proper rank is a significant computational
effort. Note that this default behavior may be optimized: either by
taking advantage of partial ordering and only fixing the position of
the updated element (in O(|I|)) or by using a method described in
Section 3.2.5.

In this paper, we introduce two alternative formulas that can be
used instead: PNMax and PNSum. We think both represent natural
approaches when trying to take into account the actual proof values
and making the spread proportionally rather than evenly.

3.2.1 Expected Properties

We begin by establishing the desired properties of a proof-number-
based bias function, so it will nicely fit the framework, and its type
could be treated as a parameter of the GPN-MCTS.

Thus, in line with the structure of (3), the proper formula should
be a function taking a node i, and a set of nodes I (being i and
all its siblings) and returning a number in [0, 1], with larger values
representing a greater bias towards selecting the node.

Additionally, we define a set of conditions that we argue a proper
bias formula should meet. Let pn(i) be the proof number of a node i.
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(a) Formula should return 0 if it is impossible to prove a node (pn(i)
is ∞).

(b) If for any j ∈ I, pn(j) is infinite, the values for all finite children
should be strictly positive.

(c) If pn(i) equals pn(j), then the output for i and j, given the same
I should also be equal.

(d) (optional) Formula should always return 1 for the lowest finite
pn(i) value among I.

The invariants above ensure that the actual behavior of the bias for-
mula aligns with the natural expectations. For the PNRank formula
defined as (3), the first three conditions hold.

3.2.2 PNMax

The first of the newly proposed approaches is to scale values with
respect to the range of (finite) proof values among the children. This
bias formula, named PNMax (4), requires calculating the minimal
and maximal proof numbers among all children, which is signifi-
cantly less computationally expensive than sorting.

The functions maxf and minf compute, respectively, the
maximum and minimum proof values among the given set of
nodes, taking into account only finite values. Thus, maxf(I) =
maxj∈I∧pn(j)�=∞pn(j).

PNMax(i, I) =
{
0 if pn(i) is ∞
1− pn(i)−minf(I)

1+maxf(I)−minf(I)
otherwise

(4)

For this formula, all four conditions are satisfied.

3.2.3 PNSum

As an alternative, we propose a bias formula that spreads values pro-
portionally with respect to the sum of all finite proof values among
the children. For this formula, PNSum (5), all conditions except (d)
are met.

PNSum(i, I) =
{
0 if pn(i) is ∞
1− pn(i)

1+
∑

j∈I∧pn(j) �=∞ pn(j)
otherwise

(5)
The unique property of PNSum is that its behavior is far more

strongly correlated with the branching factor of the parent node. than
in the other tested formulas. This, depending on the game and the test
setting, may turn out as a benefit or a liability.

3.2.4 Cpn Constant Tuning

Previous research regarding PN-MCTS was somewhat based on the
assumption that the Cpnconstant is universal, and similarly to the
MCTS C constant, the same value can be used across a variety of
games. Thus, the relation between Cpn and each tested game was not
properly studied. As our approach introduces alternative functions to
serve as UCT-PN formulas, the need for game- and formula-based
tuning seems even more important.

Although the experiments and associated discussion are presented
in Section 4.1, we think it is worth stating here, as an essential part
of the description of the algorithm that indeed, the Cpnvalue has a
crucial impact on the performance of GPN-MCTS. Moreover, the
peak performance may occur at every point of the spectrum of tested
values, as well as the peak for different UCT-PN formulas may be
achieved by different Cpn values for the same game.

3.2.5 Backpropagation Optimization

All three UCT-PN bias formulas share the same characteristic: their
value for a given node depends on all children of the same parent. In
case of PNMax and PNSum, these are factors that can be associated
with the parent node and simply stored there as precomputed values,
but for PNRank the formula is more complicated and strongly ben-
efits computing UCT-PN value for all children at once.

This, however, complicates the usual backpropagation step of
PNS. Originally, it is a cheap operation requiring an update of a par-
ent value if any child value was modified. Now, apart from just a
proof number, we also need to take into account a UCT-PN value,
and thus, all children of the parent should be updated, which is sig-
nificantly more expensive, especially for PNRank.

However, we can at least partially mitigate that cost. The main
observation is that not all values that would be changed during back-
propagation will actually be called by the UCT-PN during the MCTS
selection step. Thus, in our implementation, we optimized this step
by setting the needRecalc flag on a node with updated proof number,
and do not precompute UCT-PN value for this parent nor its sib-
lings. UCT-PN formula is computed in a call-by-need manner, only
if a needRecalc node is encountered during the selection phase (and
after, the flag is set to false).

3.3 Mobility-based Initialization

Most classic improvements of PNS are focused on handling the issue
of memory consumption when attempting to solve the game tree [6,
17], so they have no application when proof numbers are used as a
selection bias inside the game-playing algorithm.

However, the mobility initialization enhancement [24] can be
straightforwardly applied to GPN-MCTS. The idea is to initialize un-
known leaf nodes in a more elaborate way than the one described in
Section 2.2. In an AND node, the proof number can be set to the
number of legal moves in this node. (In PNS, the disproof numbers
are initialized that way in OR nodes.) This optimization improves the
quality of (dis)proof numbers, as it works as one-step lookahead for
computing the estimated sizes of the subtrees to prove.

3.4 Score Bounded GPN-MCTS

In practical implementations, algorithms like MCTS are nearly never
applied in a vanilla format. Usually, the resulting algorithm consists
of the union of a few general enhancements plus game-dependent
improvements. For this reason, one of our goals was to perform tests
of the proposed GPN-MCTS using a well-established advanced algo-
rithm setup and see if the improved results carry over. We decided to
put as our baseline an MCTS version with two improvements. One is
simply a standard technique of tree reuse [7], and the other is Score
Bounded MCTS [8].

Score-Bounded Monte-Carlo Tree Search (SB MCTS) is an exten-
sion of MCTS Solver [27] that can handle draws, and is generalized
to games with many outcomes, as well as games with more than two
players. Subtree-solving is probably the only line of MCTS enhance-
ments that may be considered obligatory, as it comes with nearly no
drawbacks. It is easy to implement, has a negligible computational
cost, and more often than not increases the playing strength of an
agent when applied to zero-sum games.

Proof-Number Search and Score-Bounded MCTS are based on a
similar premise; in both cases, we are tracking which subtrees of the
search tree are solved. On the one hand, PNS stores data allowing it to
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predict which subtrees can be solved with less effort, the information
SB MCTS is lacking. On the other hand, SB MCTS requires only two
values (lower bound, upper bound) per tree node to store guaranteed
payoffs, regardless of the number of possible outcomes in the game.
For the purpose of biasing UCB in PN-MCTS, this would require a
number of proof trees linear with respect to possible game outcomes.
Such an approach was proposed in [14], introducing a second PN
tree to handle draws. (Note that keeping just attracting outcome as in
Multiple-Outcome PNS [21] does not work when applied to dynamic
in-game search.)

We argue that using a well-established and more general solution,
such as the Score Bounded extension, is a better option than fur-
ther extending PN-MCTS into overlapping tasks of skipping solved
subtrees and biasing a final move selection, as intended by [14]. Al-
though PN trees can be used that way, it is inefficient, and the result-
ing code is less manageable.

The results (shown in Section 4.2) confirm that GPN-MCTS works
well when combined with the Score Bound method, and there is no
significant loss of quality between results on GPN-MCTS vs. MCTS
and Score Bounded GPN-MCTS vs. Score Bounded MCTS.

3.5 The GPN-MCTS Algorithm

The pseudocode for a single iteration of GPN-MCTS is shown as
Alg. 1. The overall frame of the algorithm follows the MCTS defi-
nition from [7], and uses the same terminology when possible. For
example, DEFAULTPOLICY(s) encodes the standard simulation for
the given game state to a terminal state.

A flag needRecalc of a node is the one introduced by opti-
mization described in Section 3.2.5, and is set to false inside the
UPDATECHILDRENPNSCORES() procedure. The details of this pro-
cedure are omitted, as it just calculates selection bias values of the
children nodes for the node’s moving player, according to the formu-
las from Section 3.2.

BESTUCTPNCHILD returns a child that maximizes the value of
the UCT-PN Formula (2), with a comment that other bias functions,
instead of PNRank might be encoded there.

The BACKUP(vl,Δ) function consists of two separate parts. One
is the standard MCTS backpropagation. The other is based on up-
dateAncestors procedure (c.f. [12]) to backup proof numbers in an
optimized way (early stop when no change is detected).

Finally, UPDATEPROOFNUMBER(p), updates the proof number
in a node for a given player according to the PNS setProofAndDis-
proofNumbers procedure. The main differences here is that we up-
date only proof numbers and that the OR/AND node distinction is
based on whether p is a player performing a move at that node or
not. A proofWinner in a leaf node is either Unknown if the asso-
ciated game state is not terminal, or the player that won the game
otherwise.

4 Experiments

The experiments have been conducted using the Ludii general game-
playing system, which provides an environment for developers to
test their implementation of general game-playing agents [19]. It was
chosen as it contains over 1,000 games described in its game descrip-
tion language, and implementations of various standard algorithms
and enhancements (such as several variants of MCTS), with a single,
unified API for the development of AI agents.

The presented GPN-MCTS algorithm has been implemented as
an enhancement of the agents available in Ludii, and merged into

Algorithm 1 The GPN-MCTS Algorithm
Input: v0 – current root node of the GPN-MCTS tree
1: function GPN-MCTS-ITERATION(v0 )
2: vl ← TREEPOLICY(v0)
3: Δ← DEFAULTPOLICY(vl.STATE())
4: BACKUP(vl,Δ)

5:
Input: v – root node of the GPN-MCTS tree
6: function TREEPOLICY(v)
7: while v.STATE().ISNOTTERMINAL() do
8: if v.needRecalc then v.UPDATECHILDRENPNSCORES()
9: if v.ISNOTFULLYEXPANDED() then

10: return EXPAND(v)
11: else
12: v ← v.BESTUCTPNCHILD()

13: return v
14:
Input: v – last node of iteration in GPN-MCTS tree
15: function EXPAND(v)
16: a← RANDOMELEMENT(v.UNTRIEDMOVES())
17: v′ ← CREATENODE(v.STATE().APPLY(a))
18: for all p ∈ PLAYERS() do v′.UPDATEPROOFNUMBER(p)
19: v.ADDNODE(v′, a)
20: return v′
21:
Input: vl – last node of iteration in GPN-MCTS tree
Input: Δ – final scores for each player of iteration
22: function BACKUP(vl,Δ)
23: v ← vl
24: while v �= None do
25: v.scoreSum ← v.scoreSum +Δ[leaf.player ]
26: v.iterations ← v.iterations + 1
27: v ← v.PARENT()

28: for all p ∈ PLAYERS() do
29: v ← vl
30: c← True
31: while c and v �= None do
32: c← v.UPDATEPROOFNUMBER(p)
33: if c then v.needRecalc ← true
34: v ← v.PARENT()

35:
Input: p – player for whom the update takes place
36: function NODE.UPDATEPROOFNUMBER(p)
37: if ISNOTEXPANDED() then
38: if proofWinner = Unknown then proofNumber ← 1
39: else if proofWinner = p then proofNumber ← 0
40: else proofNumber ←∞
41: return True
42: oldProof ← proofNumber
43: if p = nodePlayer then � PNS OR node
44: proofNumber ←∞
45: for all child ∈ CHILDREN() do
46: proofNumber ← MIN(proofNumber , child.proofNumber)
47: else � PNS AND node
48: proofNumber ← 0
49: for all child ∈ CHILDREN() do
50: proofNumber ← proofNumber + child.proofNumber

51: return proofNumber �= oldProof

the official Ludii codebase.1 Experiments were run using Ludii ver-
sion 1.3.14. Two versions of GPN-MCTS are available: with Score
Bounded enhancement and without. If not stated otherwise, the ex-
periments are performed by playing with Score Bounded GPN-
MCTS with tree reuse against Score Bounded MCTS with tree reuse.
For both agents, the MCTS C parameter is set to

√
2. Player po-

sitions are swapped in all tests so that the agents play both sides
equally often, and draws count as half wins. The experiments were
performed on different machines; however, for any game, all results
regarding this game were computed using the same hardware, which
makes them comparable. For every result, if any error margins are

1 https://github.com/Ludeme/Ludii
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presented, they represent a 95% confidence interval.

4.1 UCT-PN Bias Formulas and Cpn

The main experiments were conducted on a set of two-player, zero-
sum board games, including the games used for experiments in
[14]. Our aim is to test the behavior of each bias formula variant
(PNRank, PNMax, PNSum) and the influence of Cpn constant
on the improvements over the baseline agent. We tested Cpn ∈
{0.0, 0.1, 0.5, 1.0, 2.0, 5.0} to be consistent with the previous re-
search regarding PN-MCTS. Although this range of parameters may
be insufficient to provide the exact highest winrate available for a
given game and UCT-PN variant, it provides a good estimation of
them, as well as of the general behavior of the winrate function for
these settings. Each of the tests consists of 500 matches with 1 sec-
ond per turn. The results are presented in Table 1.

GPN-MCTS achieved 80% win rate against the Score Bounded
MCTS on 8 out of the 11 tested board games, in two cases (Ataxx
and Lines of Action) even reaching 90%. For the remaining tested
games, the results are also confident wins, with the lowest best score
63.2% obtained for Knighttrough.

The first observation is that the best Cpn values greatly differ
for various games. For some games, the best value was the lowest
one tested, and for some, the largest one (which suggests that even
the better Cpn values can potentially be found outside of the tested
range). Also, when looking at most of the games, the spread of the
winrate between the best and worst choice of Cpn is vast (in extreme
case, for Lines of Action 8 × 8, the winrate degraded from 82.5%
for Cpn = 1 to 25.9% for Cpn = 5). This is a strong indicator that
picking a value that behaves best on average is not a good idea, and
the results obtained that way may be very far from the optimal ones.

The second observation is based on comparing the behavior and
results for the three tested bias formulas. There is no clear winner on
which of the formulas is the best. Especially as often the peak win-
rates are not far from each other, and local Cpn tuning can possibly
reverse the results. (And sometimes, especially for PNSum which
has a tendency to have peaks for larger Cpn values, it may be even
further outside of the tested parameter range.) Generally, PNRank
seems like a safe choice, obtaining the best results, or relatively close
to best, for most games. In some cases, like for Minishogi, this bias
formula shows a clear advantage over the others. In others, e.g., for
Surakarta, PNMax is clearly better with over 20 percent point ad-
vantage. Although for many games PNSum has lower results, there
are also cases (Reversi) when it performs the best out of three.

Summarizing, if the game is susceptible to PN-based exploration,
then using any of the formulas should lead to improvement, but the
actual amount of this improvement depends on the particular pick
and may differ significantly.

4.2 Influence of Score Bounded on GPN-MCTS

For some of the games and the PNRank formula, we run exper-
iments without the Score Bounded enhancement (for both GPN-
MCTS and MCTS). Thus, we can analyze if the PN-based works
as well as the vanilla algorithm as with a union with other improve-
ments. The potential problem of any improvement to any complex
AI algorithm is that although it works standalone, its benefits are
degraded when applied with other improvements. Also, in more real-
world scenarios, we cannot expect our opponent to be a basic im-
plementation, so the enhancements should be able to show improve-
ments also against a more advanced opponent.

The results of our comparison show that, in general, improving
both GPN-MCTS and the opponent with the Score Bounded exten-
sion keeps the win rates in similar ranges. Note, however, that the
PN-MCTS, as its core goal is to bias exploration towards potentially
fast-to-prove nodes, is especially suited to work well with the Score
Bounded extension. This may explain why often the results including
SB have a tendency to be (slightly) better than for vanilla MCTS.

4.3 Overhead

The requirement of maintaining PNS-related structures on top of
the standard MCTS tree implies that PN-MCTS is usually slower
than the pure MCTS. Thus, it will generally perform fewer iterations
within any given time budget. For this reason, all experiments in this
paper use time-based budgets, which we consider a fair comparison,
as simulation-based budgets ignore the factor of computation over-
head. GPN-MCTS is developed as an extension of the MCTS imple-
mentation provided by the Ludii system to ensure that any difference
in performance is solely due to the implementation of the proposed
enhancement.

To measure the overhead, we included Cpn = 0 in the results
of Table 1. This winrate value represents the match between two
Score Bounded MCTS algorithms (in terms of behavior), but with
one spending additional computation time on managing proof num-
bers and UCT-PN values. Most of these win rates are within the con-
fidence interval distance to 50%, which means that the computational
overhead of GPN-MCTS seems to be small enough not to affect the
expected results.

5 Conclusion

The experimental results show that GPN-MCTS is a rather impact-
ful MCTS enhancement, and we argue that it has all the reasons
to be considered as a staple improvement to implement alongside
Solver/MAST/RAVE and other classic developments.

It is relatively simple to implement, based on a classic, well-
described algorithm. It pairs with obligatory Score Bounded MCTS
enhancement. It is easy to test whether its application will be bene-
ficial for a given game – comparing an algorithm without extension
with any bias formula and one or two small Cpn values should give
the right indication. And the potential gains can range from a trust-
worthy 60% win up to a 90% decisive victory.

In this paper, we focused our experiments on two-player games,
despite the fact that GPN-MCTS can actually handle games with
more players. Although multi-player games are an interesting chal-
lenge, so far integrating solving capabilities in MCTS has led only to
limited improvements [18]. Therefore, we have considered the appli-
cation of GPN-MCTS in these domains as future research.

Our preliminary experiments have indicated that there are games
where GPN extension makes no visible impact (Pentago, Pentalah)
or even worsens the results (Connect Four, Diagonals). This ought
to be expected, as Proof-Number Search does not always work when
applied in a game-agnostic manner. PNS takes advantage of situa-
tions when there are deep, narrow winning paths. For some games,
introducing domain knowledge [12] is required to shape the search
tree in such a way that narrow and forced paths emerge. Testing if
transferring such knowledge to GPN-MCTS framework is possible
and it will positively influence results for such games is one of the
promising paths for future work.
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Table 1: The results of GPN-MCTS versus MCTS. Variant including SB means both algorithms use Score Bounded and tree reuse, otherwise
it is just tree reuse. (500 games, 1s per turn).

Variant Cpn value
0.0 0.1 0.5 1.0 2.0 5.0

Ataxx
PNRank 45.9± 4.37 58.0± 4.32 82.3± 3.33 87.0± 2.95 89.4± 2.70 89.5 ± 2.67
PNRank+SB 50.1± 4.38 60.6± 4.27 85.3± 3.09 89.2± 2.72 91.4± 2.46 92.0 ± 2.36
PNMax+SB 49.2± 4.38 65.3± 4.17 92.4 ± 2.33 92.3± 2.33 91.0± 2.51 89.1± 2.71
PNSum+SB 45.6± 4.36 56.5± 4.33 55.7± 4.34 56.2± 4.34 61.6± 4.25 71.2 ± 3.93

Awari
PNRank 49.0± 4.11 72.9 ± 3.46 70.4± 3.53 61.2± 3.61 50.9± 3.95 43.0± 4.27
PNRank+SB 48.1± 3.97 71.0± 3.53 74.3 ± 3.32 62.2± 3.63 50.4± 3.92 43.2± 4.21
PNMax+SB 50.9± 3.95 78.2 ± 3.21 69.8± 3.50 56.3± 4.28 45.5± 4.27 45.1± 4.25
PNSum+SB 49.8± 4.04 62.2± 3.73 78.8± 3.28 79.7 ± 3.07 77.2± 3.34 67.9± 3.77

Knightthrough
PNRank 48.0± 4.38 50.6± 4.39 52.2± 4.38 52.8± 4.38 62.6± 4.25 74.0 ± 3.85
PNRank+SB 53.2± 4.38 45.8± 4.37 46.2± 4.37 56.3± 4.33 54.8± 4.37 59.2 ± 4.31
PNMax+SB 46.8± 4.38 56.6± 4.35 50.8± 4.39 62.8± 4.24 63.2 ± 4.21 54.4± 4.37
PNSum+SB 49.0± 4.39 50.0± 4.39 56.0± 4.36 52.0± 4.38 55.8± 4.36 60.0 ± 4.30

Lines of Action (7× 7)
PNRank 52.1± 4.38 67.4± 4.11 85.0± 3.13 87.0± 2.95 88.4 ± 2.81 80.2± 3.49
PNRank+SB 47.6± 4.37 67.1± 4.12 82.8± 3.31 91.3± 2.47 91.8 ± 2.39 83.6± 3.25
PNMax+SB 52.6± 4.38 66.3± 4.14 81.3± 3.42 84.3 ± 3.14 68.6± 4.06 65.8± 4.13
PNSum+SB 54.6± 4.37 55.1± 4.36 60.9± 4.28 64.9± 4.18 67.9± 4.08 69.3 ± 4.04

Lines of Action (8× 8)
PNRank 50.0± 4.39 56.4± 4.35 83.0± 3.30 85.8 ± 3.06 80.3± 3.48 63.9± 4.21
PNRank+SB 51.8± 4.38 63.6± 4.22 83.8± 3.23 87.4 ± 2.91 81.9± 3.37 55.2± 4.35
PNMax+SB 50.8± 4.39 55.8± 4.36 68.8± 4.07 82.5 ± 3.33 63.7± 4.21 25.9± 3.83
PNSum+SB 48.0± 4.38 54.5± 4.33 52.4± 4.38 55.6± 4.41 55.5± 4.75 64.3 ± 4.48

Los Alamos chess
PNRank 53.2± 4.10 71.9± 3.76 85.5 ± 2.94 82.4± 3.22 80.5± 3.36 80.5± 3.39
PNRank+SB 47.3± 4.16 71.7± 3.73 81.0± 3.33 84.5 ± 3.02 80.5± 3.38 79.3± 3.43
PNMax+SB 48.7± 4.16 71.1± 3.74 73.4± 3.73 76.5± 3.52 80.5 ± 3.35 78.7± 3.45
PNSum+SB 49.7± 4.11 60.3± 4.10 64.5± 3.95 72.7± 3.75 77.5 ± 3.46 77.0± 3.54

Minishogi
PNRank 47.4± 4.38 55.0± 4.37 67.8± 4.17 69.2 ± 4.05 56.8± 4.35 45.6± 4.37
PNRank+SB 45.2± 4.37 54.4± 4.37 67.8 ± 4.10 66.2± 4.15 63.8± 4.22 46.0± 4.37
PNMax+SB 52.4± 4.38 49.6± 4.39 51.2 ± 4.39 34.6± 4.17 31.6± 4.08 36.2± 4.22
PNSum+SB 49.6± 4.39 52.4± 4.38 57.0± 4.34 59.4 ± 4.31 51.8± 4.38 48.8± 4.39

Reach Chess
PNRank 44.4± 4.36 58.6± 4.32 64.8± 4.19 66.2± 4.15 71.8± 3.95 76.8 ± 3.70
PNRank+SB 50.2± 4.39 62.0± 4.26 64.6± 4.20 72.2± 3.93 79.0 ± 3.57 78.0± 3.64
PNMax+SB 49.2± 4.39 58.8± 4.32 70.2 ± 4.01 65.2± 4.18 69.8± 4.03 55.2± 4.36
PNSum+SB 46.2± 4.37 57.4± 4.34 59.8± 4.30 63.6± 4.22 64.4± 4.20 68.2 ± 4.09

Reversi
PNRank 48.7± 4.28 65.1± 4.11 71.6 ± 3.89 49.9± 4.32 43.4± 4.33 42.5± 4.32
PNRank+SB 50.0± 4.32 71.0 ± 3.87 69.4± 3.99 53.2± 4.34 42.4± 4.27 37.2± 4.22
PNMax+SB 50.0± 4.24 63.1 ± 4.16 59.0± 4.26 45.2± 4.30 36.2± 4.18 35.0± 4.15
PNSum+SB 49.5± 4.28 55.0± 4.27 60.7± 4.21 71.7± 3.86 76.7 ± 3.64 64.1± 4.14

Skirmish
PNRank 51.0± 4.25 60.0± 4.14 60.3 ± 4.14 49.5± 4.26 54.7± 4.29 50.6± 4.25
PNRank+SB 50.6± 4.16 62.4 ± 4.07 62.3± 4.11 61.7± 4.17 60.8± 4.17 55.8± 4.29
PNMax+SB 51.5± 4.20 65.1± 4.00 65.3 ± 4.05 58.0± 4.17 56.2± 4.26 39.0± 4.18
PNSum+SB 50.5± 4.23 49.9± 4.19 56.4± 4.11 55.3± 4.12 63.4± 4.38 63.8 ± 4.03

Surakarta
PNRank 49.6± 4.34 60.2 ± 4.25 59.8± 4.25 53.8± 4.35 36.8± 4.17 13.7± 2.97
PNRank+SB 49.5± 4.34 60.5± 4.23 60.6 ± 4.25 59.1± 4.26 46.7± 4.33 15.2± 3.11
PNMax+SB 48.6± 4.36 65.1± 4.13 82.0 ± 3.33 68.4± 4.05 44.4± 4.32 22.4± 3.67
PNSum+SB 47.8± 4.35 52.5± 4.63 54.3± 4.50 50.9± 4.35 54.6± 4.34 57.7 ± 4.27
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